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Abstract
We reconfirm the performance of the initial scheme for calculating the ground-state pair density
(Higuchi and Higuchi 2007 Physica B 387 117, 2008 Phys. Rev. B 78 125101) by using the
alternative approximation of the correlating kinetic energy functional. It is shown that about
20% of the correlation energy can be reproduced by the initial scheme, irrespective of the
approximate form of the correlating kinetic energy functional. On the basis of the initial
scheme, various kinds of schemes that go beyond the initial one can be developed. We illustrate
two kinds of computational schemes.

1. Introduction

The pair density (PD) functional theory is expected to be one
of the most promising theories beyond the density functional
theory, because the PD has a larger amount of information
than the electron density. The PD functional theory itself
was first proposed by Ziesche [1, 2], and was followed by
many other contributions [3–19]. However, there are two
problems for the practical use of the theory. One is concerned
with the fact that the variational principle with respect to the
PD should be performed within the set of N-representable
PDs. Although many attempts have been made to obtain
the necessary and sufficient conditions for N-representable
PDs [20–27], they have not yet been obtained in a practical
form. This is a longstanding problem. Another problem is
concerned with the approximate form of the kinetic energy
functional. Through the constrained-search method the kinetic
energy is a functional of the PD. Unfortunately this functional
is unknown and has to be approximated. Several approximate
forms have been proposed so far [5, 6, 11, 28].

Due to the above problems, few computational schemes of
the PD functional theory have been reported so far. Recently,
we have proposed a computational scheme for calculating
the ground-state PD [16, 18] on the basis of the extended
constrained-search (ECS) theory [29–34]. In this scheme,
in order to avoid the N-representability problem, the search
region of PDs is restricted in the set of PDs that are constructed
from the single Slater determinants (SSDs). Namely, the best
solution is searched within the set of restricted but definitely

N-representable PDs. For the development of the kinetic
energy functional, the sum of the kinetic energy functional of
a noninteracting reference system and the correlating kinetic
energy functional is used as the approximate form of the kinetic
energy functional [16, 18]. Since this scheme is perhaps the
first one to provide a practical scheme that incorporates both
of the above-mentioned problems, this is regarded as the initial
scheme for calculating the ground-state pair density [16, 18].
Very recently, we have performed actual calculations on the
basis of this initial scheme. For the Ne atom it is illustrated
that about 20% of the correlation energy is reproduced by this
scheme [18].

In this paper, we shall reconfirm the performance of the
initial scheme by using the alternative approximation of the
correlating kinetic energy functional. Based on the results
obtained by the initial scheme, it is expected that various kinds
of effective schemes that go beyond the initial scheme can be
developed. We shall review our recent attempt [17] and discuss
other possibilities to go beyond the initial scheme.

2. PD functional theory by means of the single Slater
determinant

2.1. Overview of the initial scheme

In this section, we shall overview the initial scheme. We shall
consider the many-body system, the Hamiltonian of which is
given by

Ĥ = T̂ + Ŵ +
∫
ρ̂(r)vext(r) dr, (1)

0953-8984/09/064206+04$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/6/064206
mailto:khiguchi@hiroshima-u.ac.jp
mailto:higuchi@shinshu-u.ac.jp
http://stacks.iop.org/JPhysCM/21/064206


J. Phys.: Condens. Matter 21 (2009) 064206 K Higuchi and M Higuchi

where vext(r) is an external potential, and where T̂ , Ŵ , and
ρ̂(r) are the operators of the kinetic energy, electron–electron
interaction energy, and electron density, respectively. The PD
is defined as

γ (2)(rr′; rr′)

= 〈�| 1
2

∫ ∫
ψ†(x)ψ†(x ′)ψ(x ′)ψ(x) dη dη′|�〉, (2)

whereψ(x) andψ†(x) are field operators of electrons,� is the
antisymmetric wavefunction, and x is the coordinate including
the spatial coordinate r and spin coordinate η. According to the
ECS theory [29–34], the universal functional can be defined by

F[γ (2)] = Min
�→γ (2)

〈�|T̂ + Ŵ |�〉, (3)

where � → γ (2) denotes the searching over all antisymmetric
wavefunctions that yield a prescribed γ (2)(rr′; rr′). By means
of the universal functional, we can give the theorem of the
one-to-one correspondence between the ground-state PD and
ground-state wavefunction, and the variational principle with
respect to the PD [16, 18].

In order to perform the variational principle, it is necessary
to restrict the search region within the set of N-representable
PDs. Our strategy is to restrict the region within the N-
representable PDs which are constructed from SSDs [16, 18].
Searching the best solution within such  a  restricted  region
results in the single-particle equation:{
− h̄2∇2

2m
+ vext(r)

}
φξ (x)

+
∫

dx ′
{

e2

|r − r′| + 1

2

δ
Txc[γ (2)]
δγ (2)(rr′; rr′)

∣∣∣∣
γ
(2)
0

+ 1

2

δ
Txc[γ (2)]
δγ (2)(r′r; r′r)

∣∣∣∣
γ
(2)
0

} N∑
ν=1

{φ∗
ν (x

′)φν(x ′)φξ (x)

− φ∗
ν (x

′)φξ (x ′)φν(x)} = εξφξ (x), (4)

where 
Txc[γ (2)] is the correlating kinetic energy functional
that is defined as the difference between the kinetic energy of
the many-body system and that of the noninteracting reference
system [16, 18]. The reproduced form of the PD is given by

γ (2)(rr′; rr′) = 1
2

N∑
μ,ν=1

∫ ∫
{φ∗
μ(x)φ

∗
ν (x

′)φμ(x)φν(x ′)

− φ∗
μ(x)φ

∗
ν (x

′)φν(x)φμ(x ′)} dη dη′. (5)

Equations (4) and (5) are the self-consistent single-particle
equations. Equation (4) can be regarded as a modified Hartree–
Fock (HF) equation, in which 
Txc[γ (2)] terms are included
as the correlation potentials. Namely, if 
Txc[γ (2)] terms
are neglected, the equation exactly coincides with the HF
equation. Due to 
Txc[γ (2)] terms, spin orbitals deviate from
the solutions of the HF equation. Not only the additional
terms but also values of the Hartree and Fock potentials are
differences of this equation and the HF equation. All of these
differences come from 
Txc[γ (2)] terms, which should be
recognized as the correlation effects.

In order to solve the single-particle equation, we need the
approximate form of 
Txc[γ (2)]. To this end, with the aid

of the scaling properties of 
Txc[γ (2)] [16], we have already
developed two kinds of approximate forms:


Txc[γ (2)] = K1

∫ ∫
dr dr′ γ

(2)(rr′; rr′)7/6

|r − r′| (6)

or


Txc[γ (2)] = K2

∫ ∫
dr dr′γ (2)(rr′; rr′)4/3, (7)

where K1 and K2 are arbitrary constants [16, 18].
As mentioned in section 1, the PD functional theory is not

yet a fully formed field. Therefore, it is important as a first
step toward developing the PD functional theory to present
an initial standard scheme which just corresponds to the HF
approximation of the wavefunction theory. As is well known,
the HF approximation gives the best solution within the set
of SSDs. In a similar way to that, the present scheme gives
the best PD within the restricted search region consisting of
the SSD-representable PDs. In addition, the single-particle
equation of the present scheme is computationally tractable
like the HF equation. Thus, the position of the scheme
in the PD functional theory just corresponds to that of the
HF approximation in the wavefunction theory. There is no
doubt that the HF approximation can be regarded as an initial
standard in the wavefunction theory. Correspondingly, the
scheme may be regarded as an initial standard in the PD
functional theory. Furthermore, although the search region
is restricted, we can say from the formal viewpoint that the
scheme may contain the correlation effects [16, 18]. This fact
is also the reason why the present scheme may be regarded as
an initial standard of the PD functional theory.

2.2. Reconfirmation of the performance of the initial scheme

In order to evaluate the initial scheme, actual calculations have
already been performed for the neutral neon atom [18], in
which it is shown that the initial scheme reproduces 22.8%
of the correlation energy. In the test calculations, we have
used equation (6) as the approximate form of 
Txc[γ (2)]. It is
also meaningful to check the performance of the initial scheme
by using the alternative approximate form of 
Txc[γ (2)],
i.e. equation (7).

The parameter K2 is determined by fitting the electron
density of the present scheme to that of the configuration
interaction (CI) method, similarly to the parameter K1 [18].
The electron density that is calculated with K2 = −0.002 is in
good agreement with the CI electron density. The root-mean-
square error is 0.04. The total energy of the present scheme is
calculated as −257.237 Ryd. This is lower than that of the HF
approximation (−257.094 Ryd) [35] and higher than that of the
CI method (−257.856 Ryd) [36] (see table 1). The correlation
energy, which is calculated as the difference between the
total energy of the HF approximation and that of the present
one, is obtained as −0.142 Ryd. This value corresponds to
18.7% of the correlation energy that is calculated by the CI
method. Also, the percentage 18.7% is comparable to the
previous result (22.8%) that is obtained by using equation (6).
Thus, we can reconfirm the performance of the initial scheme.
Namely, from the viewpoint of the correlation energy, about
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Table 1. Atomic structure calculations for a neutral neon atom.

K1 or K2 RMSEa
Total energy
(Ryd)

Correlation
energy (Ryd)

Initial-1b −1.6 × 10−3 0.04 −257.268 −0.174 (22.8%)
Initial-2c −2.0 × 10−3 0.04 −257.237 −0.142 (18.7%)
CI method — — −257.856 d −0.762 d

a The root-mean-square error for the electron density.
b Equation (6) is utilized as the approximate form of

Txc[γ (2)] [18].
c Equation (7) is utilized as the approximate form of 
Txc[γ (2)].
d Reference [36].

20% of correlation effects can be covered by the initial scheme,
irrespective of the approximate form of 
Txc[γ (2)]. Judging
from the fact that two different approximations lead to the same
order of the correlation energy, it seems that the remaining
error is caused from the restricted search region of the PD.

3. Attempts beyond the initial scheme

As mentioned in the previous section, the initial scheme can
reproduce about 20% of the correlation energy, irrespective of
the approximate form of 
Txc[γ (2)]. So, the remaining parts
of the correlation effects may be covered only by extending
the search region substantially. In order to extend the search
region, we have already proposed the PD functional theory that
yields the best PD within the set of the Jastrow wavefunction
PDs of the lowest-order (LO-Jastrow PDs) [17]. In a previous
paper [17], we adopted the correlation function that depends
only on the electron–electron separations. However, it is
pointed out that one needs the correlation function that depends
not only on the electron–electron separations but also on the
electron–nucleus separations [37]. Taking this into account,
the LO-Jastrow PD is generally given by

γ (2)(rr′; rr′) = 1
2 | f (r, r′, {Ri})|2

×
N∑

μ,ν=1

∫ ∫
{φ∗
μ(x)φ

∗
ν (x

′)φμ(x)φν(x ′)

− φ∗
μ(x)φ

∗
ν (x

′)φν(x)φμ(x ′)} dη dη′, (8)

where f (r, r′, {Ri}) is the correlation function, {Ri} denotes
the coordinates of nuclei, and φμ(x) (μ = 1, . . . , N) denote
constituent orbitals of the SSD of the Jastrow wavefunction.

Using equation (8), the variational principle with respect
to the PD leads to the following single-particle equation:

{F(r)− εδ}φδ(x) = Gδ(x) (9)

with

F(r) =
∫

dx1| f (r, r1, {Ri })|2
N∑
ν=1

|φν(x1)|2

×
{

4K

3
γ (2)(rr1; rr1)

1/3 + e2

|r − r1|
+ vext(r)+ vext(r1)

N − 1

}
, (10)

Gδ(x) =
∫

dx1| f (r, r1, {Ri})|2
N∑
ν=1

φ∗
ν (x1)φδ(x1)φν(x)

×
{

4K

3
γ (2)(rr1; rr1)

1/3 + e2

|r − r1|
+ vext(r)+ vext(r1)

N − 1

}
, (11)

where ε′
δs in equation (9) are the Lagrange multipliers, which

are determined by requiring that φμ(x) (μ = 1, . . . , N)
are orthonormal to each other. Since the resultant equations
are quite tractable, the present scheme, as well as the initial
scheme mentioned in the previous section, is a computational
approach.

Are there any ways of going beyond the initial scheme
besides the above-mentioned scheme? Here, let us recall
that we have obtained the initial scheme that corresponds to
the HF approximation. With reference to the wavefunction
theory, in which various kinds of schemes have been developed
on the basis of the HF approximation, we can develop the
other computational schemes for the PD. In the wavefunction
theory, the Møller–Plesset perturbation method is one of
the successful schemes to deal with the correlation effects
systematically [38, 39]. In the Møller–Plesset perturbation
method, the HF equation is treated as the unperturbed one for
the system. Similarly to this method, the perturbation method
may be developed by treating the single-particle equation (4)
as the unperturbed one. Since the spin orbitals of the
initial scheme contain the correlation effects as shown in the
previous section, the correlation effects are expected to be
more efficiently included in the perturbation expansion than
the Møller–Plesset perturbation method.

Furthermore, with reference to the CI method, it may be
possible to devise the variational method by utilizing the spin
orbitals of the initial scheme as the basis functions. Thus,
by referring to the wavefunction theory, various kinds of
computational schemes for calculating the ground-state PD can
be developed on the basis of the initial scheme.

4. Concluding remarks

We check the performance of the initial scheme by performing
actual calculations with the alternative approximation of the
correlating kinetic energy functional. It is shown that the
initial scheme can cover about 20% of correlation effects from
the viewpoint of the correlation energy, irrespective of the
approximate form of the correlating kinetic energy functional.
This means that we get an established initial scheme in the
sense that it can more or less cover the correlation effects
(definitely about 20% of the correlation energy). On the basis
of the initial scheme, it is possible to develop a variety of
computational schemes for the PD functional theory. This
is analogous to the wavefunctional theory, in which various
computational schemes have been developed on the basis of
the Hartree–Fock approximation.
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